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A Crisis in the Belousov-Zhabotinskii 
Reaction: Experiment and Simulation 

P. Richetti, 1 p. De  Kepper, l j .  C. Roux, 1 and Harry L. Swinney 2 

An abrupt transition that has the character of an interior crisis was observed in 
an experiment on the Belousov-Zhabotinskii  reaction as a control parameter 
was varied (a crisis is a qualitative change in the dynamics of a system observed 
when an attractor collides with the stable manifold of a fixed point). The inter- 
pretation of the observed behavior as a crisis is corroborated by a numerical 
analysis of a seven-variable model of the reaction. The waveforms, attractors, 
and maps obtained in the simulation are remarkably similar to those obtained 
in the laboratory experiment. The simulation indicates that the crisis is a 
consequence of a multivalued first return map. 

KEY WORDS:  Nonlinear dynamics; chaos; crisis; Belousov-Zhabotinskii  

reaction. 

1. I N T R O D U C T I O N  

The term crisis has been coined(~ to describe the sudden qualitative change 
in dynamical behavior that occurs when a chaotic attractor collides with an 
unstable coexisting periodic orbit or its stable manifold. For  1D maps the 
stable manifold is zero-dimensional; then, the crisis occurs by collision with 
an unstable periodic point. For example, the one-dimensional map 

x n +  l = f ( x , , )  = r x , , ( 1  - -  x , , )  (1) 

can exhibit two different types of crisis as a function of the control 
parameter r. It is well known that this logistic map yields a subharmonic 
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bifurcation cascade, which accumulates at r~=3.5699456... .  (2'3) On 
increasing r further, the resulting chaotic attractor undergoes a crisis for 
r* = 4, where the unstable period-1 orbit collides with the chaotic attractor 
on its basin boundary; this is called a boundary or exterior crisis. Beyond 
r* the previous chaotic attractor is unstable and for all initial values 
the system will ultimately diverge to minus infinity. Nevertheless, for 
(r - r*) ~ 1, if initial conditions are chosen in the previously chaotic region, 
the system may stay for a relatively long time on the formerly stable 
chaotic attractor before departing from it. This phenomenon is called 
transient chaos. 

The other type of crisis generated by the map (1) is observed for 
r~ < r < r*, where it is known that periodic windows (4,s) can be observed. 
These arise from a tangent bifurcation and disappear through a period 
doubling cascade to produce a multiband chaotic attractor. Beyond a 
critical value r = r ~ each multiband attractor suddenly enlarges to a new, 
single, broadband attractor in which the previously multiband attractor is 
immersed. This is an interior crisis (or "explosion" of strange attractor(61): 
an unstable orbit collides with a coexisting chaotic attractor, resulting in a 
sudden enlargement in the chaotic attractor. As in the interior crisis, the 
initial chaotic attractor can be observed as a transient for r - r ~  1. 

Similar features are at the origin of these crises. A crisis is observed 
every time that, on changing a control parameter value, the maximum of a 
unimodal map exceeds the limit of the invariant interval in which the initial 
chaotic attractor is located. In both examples one can show that the 
lifetime probability distribution of transient chaotic behavior decreases 
exponentially for large time t: 

P ( t ) =  ( T ) r  ~ exp ( - t /  ( T)r) (2) 

where ( T ) r  is the mean lifetime at a given value of the control parameter r. 
Moreover, the mean lifetime scales with the distance to the critical onset 
point rc of the crisis 

( T)  r~- I r -  r,.[ -1/~ (3) 

where 7 is the order of the maximum of the unimodal map. 
Crises are ubiquitous in nonlinear systems; they occur whenever a 

chaotic attractor compete with another attractor, be it a fixed point, (7"8~ a 
limit cycle, (91 or another chaotic attractor. (ll In differential equation 
systems the associated return maps are not necessarily one-dimensional 
curves. However, Grebogi etal. u~ recently analyzed crises for higher 
dimensional Poincar6 maps. They determined that in this case the critical 
scaling relation (3) must be modified to take into account the actual 
dissipation factor of the map. 
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Very few clear experimental observations of crises have been 
published. The broadening of a three-band chaotic attractor was 
thoroughly studied in a diode inductor device (~1'12) and the observed 
behavior fit Eqs. (2) and (3) with a critical exponent ~ equal to 2, the 
generic value for the logistic map Eq. (1). Another crisis was observed in a 
CO2 laser with an internal modulation. (13) 

In this paper we discuss evidence of an interior crisis resulting from the 
interaction of two one-band strange attractors in the Belousof- 
Zhabotinskii (BZ) reaction. The experimental results are presented in 
Section 2. These are compared with a numerical simulation on a kinetic 
model of the reaction in Section 3. The striking similarities between the 
experimental results in Figs. 1, 2, 5, and 7 and the computed behavior in 
Figs. 3, 4, 6, and 8 provide an understanding of the observed dynamics, as 
discussed in Section 4. Section 5 is devoted to the analysis of the statistical 
behavior of the phenomenon, a work only possible numerically because of 
the long time scales of the experimental dynamics. 

2. E X P E R I M E N T A L  R E S U L T S  

The reaction has been performed in a stirred tank reactor described in 
earlier publications, (14 17) with the following concentrations of chemicals in 
the mixed feed stream: 

[BrO3 ]0 = 0.1 M, [Ce3+]o= 1.7 x 10 3 M 

[CH2(COOH)2]0 = 0,25 M, I-H 2804] 0 = 0.2 M 

The thermostated temperature was maintained constant at 27~ The 
input flow rate ko was used as the control parameter. The reaction 
dynamics was monitored by the electrochemical potential of a bromide- 
selective electrode. 

This composition leads to a domain presenting alternating regions (in 
the control parameter space) of periodic and chaotic states, which is a 
behavior often found in the BZ reaction/14 is) For decreasing flow rate, the 
following sequence S, is observed ~16 is): 

po, CO.,, px, Clf ,  p~, C2,3 ..., Cr ' C~),..., P~ ($1) 

where P and C stand, respectively, for periodic chaotic states and the sub- 
scripts and superscripts denote, respectively, the number of large relaxation 
and small quasisinusoidal oscillations in a periodic pattern; the behavior in 
the regime Cr that follows the crisis is different--it is discussed below. As 
suggested by the notation, the chaotic states appear as stochastic mixtures 
of the adjacent periodic states. The chaotic states are generated from the 
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adjacent periodic states by subharmonic bifurcation cascades. (~9) The 
resulting sequences are of the form 

p{ __, C{j+I _, p{+t 

which have been thoroughly discussed Refs. 14-18. The full sequence S1, 
which starts with large-amplitude relaxation oscillations, terminates with 
small-amplitude, quasisinusoidal oscillations P~. 

The Cr chaos has a quite different status. We shall now essentially 
focus our attention on the C ~ C r  transition. Figure la provides an 
illustration of a time series of the C~ chaos, while Figs. lb and lc, respec- 
tively, correspond to time series of the C~ ,3 and C~, chaos which are in the 
immediate vicinity of the previous one. Note that Cr appears as an inter- 
mixture of C{ ,j+~ and C~ types of dynamics. 

The relative proportions of C~ ,3 and C~ regimes strongly depend on the 
control parameter value. The phenomenon was first thought to be 
reminiscent of intermittency, c~ where a (noisy) laminar phase C}{ is 
interrupted from time to time by sudden bursts of chaotic regime C(,J + 1. 
This interpretation could not be validated, mainly because the Cr dynamics 
was only observed over a very narrow range of parameter values. Further- 
more, it turned out that on improving the accuracy of the pumping device, 
the observation of C~-type of dynamics was made still more difficult at the 
considered chemical constraint values. 

. . . . . . . . . . . .  i �9 . i . . . .  J . . . .  , . . . .  
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Fig. 1. Bromide ion potential time series illustrating the crisis that occurs as the flow rate is 
decreased in the experiment on the BZ reaction: (a) the chaotic state C r, observed after the 
crisis, (b) the chaotic state C~ '3, which evolves from Cr, (c) the chaotic state C~, observed 
before the crisis. The corresponding time series obtained in the simulation are shown in Fig. 3. 
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Fig. 2. Phase portraits constructed from the experimental data, illustrating the chaotic 
attractors (a) after the crisis, Cr, and (b) before the crisis, Cg. The corresponding attractors 
obtained in the simulation are shown in Fig. 4. 

However ,  as we have sketched in the in t roduc t ion ,  the evidence that  at 
first a rgued  in favor  of in termi t tency,  i.e., the existence of bursts  with a 
mean  frequency depend ing  on a cont ro l  p a r a m e t e r  value, can also app ly  to 
a crisis. In  this case the crisis would  be much like the second example  given 
in the in t roduc t ion .  In  agreement  with this la t ter  in te rpre ta t ion ,  the 
t rans i t ion  from C r to C~ is con t inuous  and the final state C~ is a l ready  
embod ied  in C r, as is clear from the phase  por t ra i t s  of the two a t t r ac to r s  
(Fig. 2). 

We  shall  see that  our  numer ica l  results on a kinet ic  mode l  of the BZ 
reac t ion  ra ther  favor  this last  in te rpre ta t ion .  

3. N U M E R I C A L  R E S U L T S  

O u r  numer ica l  results are based on the fol lowing scheme for the 
kinetics of the BZ reaction(22"23): 

B r O ~  + B r -  + 2H + --* HBrO2 + H O B r  

(kl = 2 . 1 M  -3 sec -1)  (R1) 

HBrO2 + B r -  + H + -o 2 H O B r  

(k 2 = 2 x 109M--2 sec-1) (R2) 

H O B r  + B r -  + H  + ~ B r 2 + H 2 0  

(k 3 -= 8 • I09M -2  sec - I  ) (R3) 
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BrOs  + HBrO 2 + H + ~ 2BrO) + H 2 0  

(k4= 104M -2 sec -1, k - 4  = 111 x 107M -2 sec - l )  

(R4) 

2HBrO2 --, HOBr  + BrO 3 + H + 

( k s = 4 x  107M -Z sec - I )  (R5) 

BrO) + Ce(III )  + H + --, Ce(IV) + HBrO 2 

(k6=103M Xsec-l)  (R6) 

HOBr  + MA - ,  BrMA + H 2 0  

(kT= 106M i sec 1) (R7) 

BrMA + Ce(IV) -* B r -  + R" + Ce(III)  + H + 

( k s = 5 x  103M -Z sec -1) (R8) 

R" + Ce(IV) ~ Ce(III )  + P 

(k9=108M lsec 1) (Rg) 

where P is an inert product, and BrMA and R', respectively, are 
brominated and oxidized derivatives of malonic acid (MA). From the law 
of mass action we can generate the following set of differential equations 

2 ,  = - a  ~ X j  - a2 X 1X 2 - a3 X j X 3 + k~ Xs  X 6 + ko( )(~l - X~ ) 

X 2  = al XI  - a2X1 X2 - a 4 X  2 if- a s X  2 - 2 k s X  2 + a 6 X  4 - k o X  2 

~ 3 = a l X l  + 2 a v X i X 2  a 3 X I X 3  + 2 k - k s X  2 -  a 7 X  3 --  k o X .  ~ 

X4 ---- 2a4X2 - 2a5 X2 - -  a6X4 --  k o X 4  (4) 

X 5 _= a6 X 4 - k8  X 5  X 6 - kg  X 5  X 7 - ko X s 

~ 6  = a T g 3  --  k s X s X 6  - koX6 

f(7 = k 8 X5 X6 - k 9 X5 X7 - ko X7 

where the following assigments are made: X I = [ B r - ] ,  X2= [HBrO2] ,  
3(3 = [HOBr ] ,  )(4 = [BrO2],  Xs = [Ce(IV)] ,  X6 = [BrMA] ,  X7 = [R ' ] .  
The parameters ai are defined from the rate constants ki according to 

al = k l [ B r O 3 ] [ H + ]  2, a 2 = k 2 [ H + ] ,  

a3 = k 3 [ H  + ], a4 = k a [ B r O 3  ] [ H  + ] 

a s = k _ 4 [ H 2 0 ] ,  a6 = k6[Ce( I I I ) ]  [H  + ], a 7 = k T [ M A  ] 

and X~I = [ B r - ] 0 .  
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The system (4) has already allowed us to account rather accurately for 
much complex dynamical behavior observed in the BZ reaction. (22'23) Using 
the set of constraint values 

[ B r O 3  ]o = 5 • 1 0 - 2 M ,  [MA]o  = 10-3M, [Ce(III ) ]  o = 1.5 • l 0 - 4 M ,  

[ H + ] o  = 1.5M, [Br ] o =  3.0 x 10-TM 

we have obtained the following chaotic periodic sequence as a function of 
the flow rate coefficient ko: 

po __, CO,  i ~ p] ~ CI,2 __, pl 2 __, C 2 , 3  ___+ p~ ~ C13,4 --, p4 

Cg ~ 2Po ~ --* P~ 

The computed succession of states and even the shape of the attractors 
are strikingly parallel to most of the experimental observations. The main 
difference from experiments lies in the small hysteresis loop observed in the 
simulation between p4 and Cg. For  increasing ko a transition is observed 
between two periodic states (P~ to 2P0 ~) for ko =ko~; the reverse transition 
occurs for a flow rate ko2 (ko2 < k01 ) from Cg to p4. This last transition is a 
crisis, but no Cr-type chaos is observed in this situation. Nonetheless, the 
C 3,4 and the Cg time series displayed, respectively, in Figs. 3b and 3c 
compare very well with those presented in Figs. lb and lc. 

7 ~ 

2 _  . . . . . . . . . . . . . . . . . . . . . . . .  i 
~ 0  500 1000 1500 2000 2500 

0 100 200 300 400 0 100 200 300 400 

TIME (MINUTES) 

Fig. 3. Time series for log[Br - ] ,  obtained in the numerical study of the model: (a) the 
chaotic state Cr, observed after the crisis, (b) the chaotic state C~ ,4, (c) the chaotic state C~, 
observed before the crisis. 
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x(t) x(t) 

Fig. 4. Phase portraits (with X=log[Br-], Y=log[Ce(IV)]), obtained in the numerical 
simulation, illustrating the chaotic attractors (a) after the crisis, C~(ko=3.564160• 
10 -3 sec-~) and (b) before the crisis, C~ (ko= 3.564248 x 10 -3 sec l). 

The transition values kot and ko2 depend sensitively on the values of 
the other parameters. If at the upper limit ko2 the system can be made to 
undergo a transition from C~ to another chaotic state rather than to a 
periodic state P~, then a Cr type of chaos is generated. 

For example, by changing [ B r - ] o  to 2.795 10-7mole/liter,  a 
transition from C~ to C 9,1~ comes through a Cr-type regime displayed in 
Fig. 3a. The similarity with the experimental observations (Fig. la) is 
remarkable. As in the experiments, the crisis occurs at the transition 
between C~ and Cr. The attractors obtained in the simulation are shown in 
Fig. 4, where one can notice that the C~ attractor is immersed in the Cr 
attractor. 

The model thus provides us with a very convenient tool to analyze 
the complex experimental dynamics observed in the BZ reaction. The 
computed results give more confidence in the experimental observations of 
chaos (Fig. lc) which, though not totally free from noise, is not due to 
stochastic fluctuations in the constraint parameter. 

4. POINCARI~ M A P S  

Poincar6 sections obtained from intersections of the 3D phase space 
orbits shown in Figs. 2 and 4 with a perpendicular plane going through the 
dashed lines on these figures are shown Fig. 5 (experiment) and Fig. 6 
(simulation). On these maps the points in the upper right corner corre- 
spond to the small-amplitude oscillations, which separate the large peak 
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Fig. 5. Poincar6 sections for the experimentally obtained chaotic attractors in Fig. 2: (a) for 
Cr (after the crisis), and (b) for C~ (before the crisis)�9 The corresponding Poincar6 sections 
obtained in the simulation are shown in Fig. 6. 

oscillations, whereas these large oscillations produce the intersections in the 
lower left parts of Figs. 5a and 6a. The number of sheets in the upper right 
part  is equal to the number of small-amplitude oscillations. In the com- 
puted results only the first two sheets can be clearly distinguished; the 
others pile up very close to each other and only an enlargment renders 
them visible. A C i ,/+1 chaotic regime presents very similar topological 
features, but the multisheeted region corresponding to the small-amplitude 
oscillations is no longer connected to the zone where the large-amplitude 
oscillations intersect the Poincar6 plane. Thus the main difference between 
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Fig. 6. Poincar~ sections for the numerically obtained chaotic attractors in Fig. 4: (a) for C r 

(after the crisis), and (b) for C~ (before the crisis). 
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C{ ,j+ ~ and Cr is the existence of a third accumulation region for Cr. This 
zone corresponds precisely to the location of the Poinear6 section of C~, as 
shown, respectively, in Figs. 5a and 5b and Figs. 6a and 6b plotted on the 
same scale: C] is contained in C~. This is even clearer if we take a look at 
the first return maps displayed in Figs. 7 and 8. We can see from Fig. 8b 
that the two parts of the C~ attractor labeled 1 and 2 have their exact 
correspondent in the Cr attractor (Fig. 8a). 

The numerical and experimental first return maps differ mainly by the 
amount of noise, which blurs the experimental map. They have the same 
overall shape, with well-defined multisheeted minima and a broad 
maximum. This shape is characteristic of all the maps in the periodic 
chaotic sequence. (19/This type of sequence is relevant to the dynamics close 
to a homoctinic bifurcation/24 26t 

Let us now focus on the calculated 1D map of C~, just before the crisis 
(Fig. 9b) and just after (Fig. 9a). In these figures the dashed lines corres- 
pond to the calculated "invariant square." The latter is obtained from the 
first return map for ko = k*. Before the crisis all points of the map iterate 
within the "invariant square." After the crisis some points fall outside this 
square and will escape the attractor on subsequent iteration. 

Unfortunately, the experimental noise prevents any similar refined 
analysis in the bench experiments. However, we can still distinguish on the 
1D map of C~ (Fig. Ta) a noisy component corresponding to the 
contribution of C;. It must also be mentioned that this experimental noise 
may advance the onset of the crisis before the actual critical parameter 

X~ 

�9 i 

. .  ' . i  ' ; , i  : ' r  / 

I ' I ~  , , ~ P , , , pl 

x~ 

Fig. 7. First return maps obtained from the Poincar6 sections (in Fig. 5) for the experimental 
data: (a) for Cr (after the crisis), and (b) for Cg (before the crisis). The corresponding first 
return maps obtained in the simulation are shown in Fig. 6. 
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the central portion of these maps is shown in Fig. 9. 

value is attained. This may explain the effects of changing the accuracy of 
the pumping devices. 

In order to get a better understanding of the evolution from C'[ to Cr 
we present an overview of the evolution of the 1D maps of the chaotic 
states from C ~ to C~ '''+1 gained from the study of the model. As explained 
previously, each chaotic state in this sequence differs from the preceding 
one by the addition of one extra small-amplitude oscillation; this translates 
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Enlargement of the central portion of the multisheeted first return maps in Fig. 8, 
obtained in the numerical simulation: (a) for Cr (just after the crisis), and (b) for Cg (just 
before the crisis). The dashed box is the "invariant square." 
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on the Poincar6 map into the emergence of a new sheet. On the 1D map 
the addition of a new sheet comes with a wider separation of the sheets (in 
fact, each sheet has a Cantor  set-like structure). This accumulation of 
sheets terminates when the last sheet added is part  of the C~ attractor. 

5. CRITICAL BEHAVIOR 

In the neighborhood of a crisis the dynamics should exhibit universal 
properties described by a characteristic exponent, but few studies in 
physical systems (u'~2) have examined this behavior. In our work the critical 
behavior could be analyzed from the integration of (4), but a detailed 
experimental study was not possible because of the critical slowing down 
near transition. Even the calculations are very lengthy and costly because 
of the high dimensionality of the system (seven independent variables) and 
the stiffness of the resulting dynamics. 

The critical value of the control parameter  was determined by trial 
and error and found to be k * = 3 . 5 6 4 0 2 4 6 x 1 0 - 3 s e c  -~. F igure l0a  
presents the distribution function of the transient chaos of the attractor C'('~ 
for k o = 3.5640160 x 10 3 s e c  1 .  This distribution function was built from 
105 chaotic transients. We can see that the exponential decay (2) is verified, 
at least for large N. Figure 10b shows the variation of ( N )  with the dis- 
tance to k~. Each mean value was derived from at least 500 transient 
chaotic states. From the log-log plot we find a characteristic exponent 
7 = 1.54 for Iko-k*l/k~ <0.15. 

We recall that 7 = 2 is obtained only in the limit of infinite dissipation. 
In our system, due to finite dissipation rate and to the associated Cantor 
set structure of the return map, a deviation from this value could be 
expected. 11~ Our estimate of the exponent was made over less than two 
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Fig. 10. Statistics of the transient chaos obtained in the numerical simulation. (a) The num- 
ber of surviving Cr-type orbits after N orbits for a Cg attractor; k0 = 3.564160 x 10-3 sec- ~. Fit 
calculated from Eq. (2) (---). (b) The computed dependence of the average lifetime of the 
transient Cr-type chaos in the Cg regime as a function of the distance to the critical point k~. 
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orders of magnitude range in control parameter because computation time 
becomes prohibitively long in the vicinity of the critical point. 

Nevertheless, the results corroborate our analysis (Section 4) of the 
phenomenon. As shown in Fig. 9a, the crisis occurs as soon as at least one 
fold extends beyond the "invariant square." Furthermore, note that the 
dependence of ( N )  changes dramatically when the relative distance to the 
critical point becomes greater than 10%; this is apparently due to the 
contribution of a new fold coming through the "invariant square." 

6. CONCLUSIONS 

The remarkable similarity of the results from numerical simulations 
(shown in Figs. 3, 4, 6, and 8) and the corresponding experimental results 
(shown in Figs. 1, 2, 5, and 7) provides strong support for the inter- 
pretation of the observed sudden change in the dynamics as a crisis, even 
though the noise in the data preclude a quantitative comparison with 
theory. 

Similar dynamics should be observed in any system exhibiting a multi- 
valued first return map with a single extremum. For example, compare our 
Figs. 1 and 9 with Figs. 4 and 5 in Ref. 12, obtained in a study of a laser 
system. 
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